A method to segment maps from different modalities using free space layout - MAORIS : MAp Of RIpples Segmentation

نویسندگان

  • Malcolm Mielle
  • Martin Magnusson
  • Achim J. Lilienthal
چکیده

How to divide floor plans or navigation maps into a semantic representation, such as rooms and corridors, is an important research question in fields such as human-robot interaction, place categorization, or semantic mapping. While most algorithms focus on segmenting robot built maps, those are not the only types of map a robot, or its user, can use. We have developed a method for segmenting maps from different modalities, focusing on robot built maps and hand-drawn sketch maps, and show better results than state of the art for both types. Our method segments the map by doing a convolution between the distance image of the map and a circular kernel, and grouping pixels of the same value. Segmentation is done by detecting ripple like patterns where pixel values vary quickly, and merging neighboring regions with similar values. We identify a flaw in segmentation evaluation metric used in recent works and propose a more consistent metric. We compare our results to ground-truth segmentations of maps from a publicly available dataset, on which we obtain a better Matthews correlation coefficient (MCC) than state of the art with 0.98 compared to 0.85 for a recent Voronoi-based segmentation method and 0.78 for the DuDe segmentation method. We also provide a dataset of sketches of an indoor environment, with two possible sets of ground truth segmentations, on which our method obtains a MCC of 0.82 against 0.40 for the Voronoibased segmentation method and 0.45 for DuDe.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparing 511 keV Attenuation Maps Obtained from Different Energy Mapping Methods for CT Based Attenuation Correction of PET Data

Introduction:  The  advent  of  dual-modality  PET/CT  scanners  has  revolutionized  clinical  oncology  by  improving lesion localization and facilitating treatment planning for radiotherapy. In addition, the use of  CT images for CT-based attenuation correction (CTAC) decreases the overall scanning time and creates  a noise-free  attenuation  map  (6map).  CTAC  methods  include  scaling,  s...

متن کامل

Green Product Consumers Segmentation Using Self-Organizing Maps in Iran

This study aims to segment the market based on demographical, psychological, and behavioral variables, and seeks to investigate their relationship with green consumer behavior. In this research, self-organizing maps are used to segment and to determine the features of green consumer behavior. This was a survey type of research study in which eight variables were selected from the demographical,...

متن کامل

مدل‌سازی صفحه‌ای محیط‌های داخلی با استفاده از تصاویر RGB-D

In robotic applications and especially 3D map generation of indoor environments, analyzing RGB-D images have become a key problem. The mapping problem is one of the most important problems in creating autonomous mobile robots. Autonomous mobile robots are used in mine excavation, rescue missions in collapsed buildings and even planets’ exploration. Furthermore, indoor mapping is beneficial in f...

متن کامل

Impact of Novel Incorporation of CT-based Segment Mapping into a Conjugated Gradient Algorithm on Bone SPECT Imaging: Fundamental Characteristics of a Context-specific Reconstruction Method

Objective(s): The latest single-photon emission computed tomography (SPECT)/computed tomography (CT) reconstruction system, referred to as xSPECT Bone™, is a context-specific reconstruction system utilizing tissue segmentation information from CT data, which is called a zone map. The aim of this study was to evaluate theeffects of zone-map enhancement incorporated into the ordered-subset conjug...

متن کامل

A Method for Body Fat Composition Analysis in Abdominal Magnetic Resonance Images Via Self-Organizing Map Neural Network

Introduction: The present study aimed to suggest an unsupervised method for the segmentation of visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) in axial magnetic resonance (MR) images of the abdomen. Materials and Methods: A self-organizing map (SOM) neural network was designed to segment the adipose tissue from other tissues in the MR images. The segmentation of SAT and VA...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1709.09899  شماره 

صفحات  -

تاریخ انتشار 2017